Why Equal Weighting Outperforms: The Mathematical Explanation
Why Equal Weighting Outperforms – The Mathematical Explanation

Equally weighted portfolios outperform their market capitalisation counterparts over the long term and over almost all short term periods. The evidence to support this is cited in the References and is demonstrated in Figure 1, which shows the performance of Australia’s standard equal weighted index, the MVIS Australia Equal Weight Index, against Australia’s standard market capitalisation weighted index, the S&P/ASX 200. Appendix 1 has more performance data on this equal weighted index and the ETF that is based on it.

Various explanations have been offered since this phenomenon was first observed, such as the effect of selling high and buying low when rebalancing the portfolio. There hasn’t however been a lot of mathematical analysis. This paper presents the data on individual stock returns to show why equal weighting has outperformed market capitalisation.

Figure 1: Cumulative performance since inception of MVIS Australia Equal Weight Index

![Graph showing cumulative performance of MVIS Australia Equal Weight Index and S&P/ASX 200 Index]

Source: VanEck, FactSet, as at 31 December 2017. Results are calculated to the last business day of the month and assume immediate reinvestment of all dividends and exclude costs associated with investing in MVW.¹ You cannot invest directly in an index. Past performance of the Index is not a reliable indicator of future performance of MVW.

¹ See appendix 1
Why equal weighting outperforms

Skew

To get the maths right you have to start at the right point. The distribution of individual stock returns is not normal. That is, the distribution is not Gaussian.

It is now widely accepted that a normal distribution is a flawed way to explain financial markets because markets have ‘fat tails’ that normal distributions don’t have. This is embodied in the delightful metaphor of a black swan. This is however only one way in which the actual distribution of stock returns differs from a normal distribution. It is time to discard the use of normal distributions.²

The consensus description used for the distribution of individual stock returns that can be seen in the data is ‘skewed’. Primarily this description indicates that the distribution is not symmetrical, as a normal distribution is. Rather, the actual distribution is pushed to one side, as can be seen in the histograms throughout this paper. There are however more differences than that.

The most comprehensive documenting of the skew of individual stock returns has been in the recent paper by Bessembinder. Bessembinder used the American monthly stock return database of the Center for Research in Securities Prices from July 1926 up to December 2016³, a period of 90½ years. His finding was that the distribution of returns from the individual stocks were highly skewed no matter what time period was chosen. He summarised what this means as follows:

Simply put, very large positive returns to a few stocks offset the modest or negative returns to more typical stocks.⁴

In Figure 2 the rectangle represents the whole of Bessembinder’s data set of 25,332 companies with each company represented by the same area, about ½ square millimetre per company.

The standout result was how few top-performing companies it took to generate the same wealth as the total population. Half of the wealth over 90½ years was created by the companies represented by the blue rectangle in the top left hand corner and the other half was created by the companies represented by the green rectangle in the top right hand corner.

The grey space represents the lower-returning companies that in aggregate returned zero.

Bessembinder tallied that the 25,332 companies created total wealth over the 90½ years of US$35 trillion dollars. The top 1,092 performers, ~4% of the population, on their own created the same US$35 trillion dollars of wealth. The other ~96% of companies totalled a zero return. The top 90 stocks, ~0.3%, created more than half of the $35 trillion dollars of wealth.

At the other end, 3,071 individual stocks, ~12%, lost all or nearly all of the money invested.⁵

For the curious, Bessembinder reported that the biggest return was from Exxon, contributing 2.88% of the total wealth creation. The second was Apple contributing 2.14%. Bessembinder provided similar results in respect of ten-year returns, annual returns and monthly returns.

Figure 2: Individual Stock Returns Over 90½ Years

Source: Bessembinder, VanEck.

² The common idea of using a lognormal distribution in place of a normal distribution, and the mathematical approach it entails, is dismissed in Appendix 2.
³ Bessembinder’s trope was to compare stock returns to the returns from Treasury bills and July 1926 is as far back as the database goes with monthly returns from Treasury bills.
⁴ p. 3
⁵ More precisely, 3,071 stocks delisted with a value of less than 2.5% of the original share price.
There is extreme skew in each time horizon. He presented a lot of statistical calculations that demonstrate the skew but the numbers are unintuitive and there is not enough data in the paper to present the findings in a simpler way.

Similar results from a second recent paper are easier to understand. This one was by Edwards, Lazzara, Preston and Pestalozzi of S&P Dow Jones Indices. Figure 3 is their chart of the returns of S&P 500 constituents from March 2003 to December 2017. There are three observations to make about Figure 3, reading from left to right:

Observation 1: The lower returning groups are bunched together, not spread out in a tail

A stock cannot do worse than -100%.

The authors' rendition of the distribution groups together all stocks that return between -50% and -100%. If the data had been presented continuously rather than as a bar chart, it would have shown that there are a large number that return exactly -100%. That is, a large number where there is a total loss of investment. This density at or near -100% conflicts with any attempt to use a normal distribution\(^6\) to describe the data.

Observation 2: The peak is way to the left

Many stocks have relatively low returns, as Bessembinder identified.

In a normal distribution the peak would be in the middle and the average and the median would coincide with the peak. It can be seen in Figure 3 that the average is higher than the peak and well above the median, which itself is well above the peak.

Observation 3: The tail to the right is very long

A small number of stocks have a very high return, again as Bessembinder identified.

This particular rendition of the distribution groups together all stocks that return more than 1,000%. This was necessary because otherwise the x axis would have been far too long to fit neatly on the page. It would however have looked even more tail-like.

The long tail could be said to be consistent with a normal distribution. What is important though is that the right side of the chart is totally different to the left side. On the positive side there are many companies well above 100%. On the negative side the limit is -100%. This is the important difference to the normal distribution.

Figure 3: Individual US stock returns March 2003 to December 2017

<table>
<thead>
<tr>
<th>Total Return (%)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>-100 to -50</td>
<td>6</td>
</tr>
<tr>
<td>-50 to 0</td>
<td>12</td>
</tr>
<tr>
<td>0 to 50</td>
<td>14</td>
</tr>
<tr>
<td>50 to 100</td>
<td>16</td>
</tr>
<tr>
<td>100 to 150</td>
<td>24</td>
</tr>
<tr>
<td>150 to 200</td>
<td>28</td>
</tr>
<tr>
<td>200 to 250</td>
<td>35</td>
</tr>
<tr>
<td>250 to 300</td>
<td>32</td>
</tr>
<tr>
<td>300 to 350</td>
<td>27</td>
</tr>
<tr>
<td>350 to 400</td>
<td>24</td>
</tr>
<tr>
<td>400 to 450</td>
<td>21</td>
</tr>
<tr>
<td>450 to 500</td>
<td>19</td>
</tr>
<tr>
<td>500 to 550</td>
<td>17</td>
</tr>
<tr>
<td>550 to 600</td>
<td>15</td>
</tr>
<tr>
<td>600 to 650</td>
<td>11</td>
</tr>
<tr>
<td>650 to 700</td>
<td>11</td>
</tr>
<tr>
<td>700 to 750</td>
<td>10</td>
</tr>
<tr>
<td>750 to 800</td>
<td>10</td>
</tr>
<tr>
<td>800 to 850</td>
<td>10</td>
</tr>
<tr>
<td>850 to 900</td>
<td>10</td>
</tr>
<tr>
<td>900 to 950</td>
<td>10</td>
</tr>
<tr>
<td>950 to 1000</td>
<td>10</td>
</tr>
<tr>
<td>> 1000</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: Edwards, Lazzara, Preston and Pestalozzi

\(^6\) or a lognormal distribution. See Appendix 2.
Edwards et al are consistent with Bessembinder in finding7 that this shape is not a feature of the particular time period chosen but that it can also be seen over shorter time periods and over periods ranging back to the 1920s.

Skew is not just a US phenomenon. Edwards et al also show a very similar result for the constituents of the S&P Europe 350 Index. Another paper by Ganti and Lazzara of S&P Dow Jones Indices has similar findings for Japan’s S&P/TOPIX 150, the S&P Pan Asia Ex-Japan & Taiwan BMI and our own S&P/ASX 200.

To delve deeper into this phenomenon needs more data than is made available in either of these papers. The following analysis uses a data set of the 200 largest companies on ASX at 12 May 2015 and the return they each generated over the following three years.8

For comparison with the chart on the previous page, Figure 4 presents this data as a histogram, with the returns rounded to the nearest 10%. The shape can be seen to match the shape in Figure 3.

Compared to Figure 3, which represents 25,332 stocks over 90½ years, Figure 4 only represents 200 stocks over 3 years. There are some observable differences that are to be expected:

- Figure 4 is not as filled out as Figure 3 because there are less stocks
- In Figure 4 there has been less time for stocks to go completely bust so the left hand side is barer than in Figure 3
- In Figure 4 there has been less time for the most successful stocks to build up a return so the right hand tail is not as long as it is in Figure 3.

Consistent with the data in Figure 3, the average in this Australian data set is 34\%, well above the median of 21\% which itself is well above the peak of the histogram at 10\%.

For the curious, the two bottom performers in the Australian data were Arrium and Slater & Gordon. The two top performers were BlueScope Steel and Regis Resources. A steelmaker at each end.

\section*{Figure 4: Returns for the 200 largest Australian stocks three years to May 2018}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4}
\caption{Returns for the 200 largest Australian stocks three years to May 2018}
\end{figure}

\begin{itemize}
\item The common idea of using a lognormal distribution in place of a normal distribution, and the mathematical approach that entails, is discussed in Appendix 2.
\item Where the stock ceased trading before the end of the three years the return is calculated to the point where it ceased trading and includes any takeover or other proceeds that an investor would have received.
\end{itemize}
Ergodicity

Another significant difference between this actual distribution of stock returns and the way a normal distribution would typically be applied is that this distribution is not ergodic. Ergodicity is the property of each constituent having the same chance to be at any point of the distribution as any other constituent.

In this context, for the distribution of stock returns to be ergodic, at the beginning of the period each stock would have had to have had the same likelihood as any other stock of being in the extreme right or extreme left. If the distribution was ergodic there would be no characteristic of the individuals stocks that could predict that certain stocks had a lesser chance than other stocks of being at either extreme.

Figure 5 plots the returns from the Australian data set against the stock’s market capitalisation at the beginning of the period. It can be seen in Figure 5 that the companies that were the largest at the beginning of the period produced returns that are far more narrowly distributed than the rest of the stocks. The extremes are populated by the smaller stocks.

The word ‘smaller’ is used with its precise meaning, as a relative term. There is no suggestion that the stocks referred to as ‘smaller’ are actually small.

It is somewhat arbitrary to draw a line in Figure 5 and say one side of the line are larger capitalisation stocks and the other side are smaller capitalisation stocks. Nevertheless, this has been done in what can be seen to be a meaningful way and at a natural break. The twelve blue dots above the red line feel like a separate group to the 188 below.

The twelve larger cap stocks have a performance range of -36% (Telstra) to 107% (CSL) compared to the complete range of -100% to 416%.

The distribution of the twelve larger cap stocks however is still skewed in the sense used in this paper because the average is well above the median which is above the peak. The average for these 12 stocks is 25% and the median is 15%. The peak, the average of the two highest dots, is 14%.

Figure 5: Returns for the 200 largest Australian stocks versus their market capitalisation
Three Years to May 2018

Source: Bloomberg, VanEck
Why equal weighting outperforms

That the returns from the larger caps are more narrowly distributed feels intuitively correct. The larger cap stocks are predominately big mature businesses so are less likely to go completely bust. On the other hand they probably already have a big market share for their main products so their growth is more limited than is typical for smaller, less mature businesses.

So the skewed distribution of individual stock returns can be separated into the sum of two separate skewed distributions with different parameters.

Figure 6: Returns for the 12 largest Australian stocks versus their market Capitalisation
Three Years to May 2018

Source: Bloomberg, VanEck

Figure 7: Returns for the next largest 188 Australian stocks versus their market capitalisation
Three Years to May 2018

Source: Bloomberg, VanEck

One for the larger stocks and one for the smaller stocks.

For comparison with Figure 4, Figures 6 and 7 show the corresponding histogram for these two separate distributions.

Figures 6 and 7 demonstrate that the smaller stocks are more likely than the larger stocks to be in the extreme left and more likely to be in the extreme right, that is, the extremely low returns and the extremely high returns.
The Smaller Stocks Outperform the Larger Stocks

It was shown above that the smaller stocks are more likely to be at the extremes of the skewed distribution. The next part of the explanation is to show that this means that the smaller stocks outperform the larger stocks.

In other words, the smaller stocks on the right hand side contribute more than the smaller stocks on the left hand side take away. Because the right hand side goes as far as 416% but the left hand side can go no lower than -100%, this hypothesis would be the intuitive conclusion.

Looking a bit deeper, there is a similar intuition if you look at Figure 3, where the median is indicated in the chart, you can see that the bottom half covers the range -100% to 99% and the top half covers the range 99% to well over 1,000%. The corresponding data for Figure 4 is that the bottom half covers the range -100% to 21% and the top half covers the range from 22% to 416%. In both cases the top half seems weightier than the bottom half.

Figure 8 shows this imbalance visually. The return of each of the 200 stocks is charted in numerical order. Stock 101 is marked to indicate the start of the top half.

It can be seen from this chart that there is more blue from stock 101 up than there is below that mark. The right hand side can be seen to outweigh the left hand side. As your eye travels out from the centre to the extremes you can see that more is being added than is being taken away.

Turning to the mathematical explanation, this is a consequence of the average being higher than the median and the median being higher than the peak. This is why a skewed distribution gets more from its exposure to the right hand side than it suffers from its exposure to the left hand side.

The statements above are useful because in order to understand how stocks perform we all need to learn about skewed distributions. The better performance of the smaller stocks though can also simply be seen from the fact that the average for the smaller stocks is higher than the average for the larger stocks.

While the idea that smaller stocks outperform has been folklore at least since Fama and French’s three-factor model, the mathematics above do more to show the nature of this phenomenon than the three-factor model attempted to do.

Figure 8: Returns for the 200 largest Australian stocks in numerical order
Three Years to May 2018

Source: Bloomberg, VanEck

101

Returns in this chart are scaled to the contribution that each stock would have made to a portfolio that was equal weighted.
The Explanation of Equal Weighting’s Outperformance

This finding that the smaller stocks outperform the larger stocks immediately explains the consistent outperformance of equal weighting over market capitalisation weighting. Equal weighting has consistently given greater exposure to the smaller stocks than market capitalisation weighting does. It is as simple as that.

The Way Forward

The finding of a distribution of individual stock returns that is shaped as described above and that is non-ergodic when size is considered is a strong effect that cannot be ignored. Any analysis of relative performance between two different portfolios should isolate the effect of these two characteristics before trying to argue that any other effect is present.

Past suggestions that the explanation of equal weighting’s outperformance lies in what happens when an equal weight portfolio rebalances are thrown into doubt. The data sets above show outperformance even though there is no rebalancing. A possible line of future research is whether, after adjusting for the exposure to smaller stocks, rebalancing adds or detracts from the performance.

The other common suggestion, following Fama and French’s three factor model, is that equal weighting outperforms due to a greater exposure to value stocks. Having found a strong effect from the exposure to smaller stocks, the question of whether a measure of value would also be useful is difficult. It would only ‘also’ be useful if it was an additional explainer and not just a second way of looking at the same phenomenon.

Mathematically, something can only be an additional explanation if it is statistically independent of the first explanation. This is a hurdle. The factor analysis that every academic now has programmed into Excel assumes that all factors are independent, but there is no work done to validate this assumption. Factor analysis should not proceed until the independence of the second factor is established.

The finding that smaller stocks outperform larger stocks is not necessarily an argument to exclude larger caps completely. Performance is not the only objective. The narrower range of the distribution of larger cap returns means less drawdown and less variance.

While diversification can address these matters to a large extent, there can still be a role for anchoring a portfolio with stocks from this narrower range of returns. Particularly if an equal weighted portfolio is seeking to outperform a market capitalisation index and tracking error is to be controlled.
Appendix 1

VanEck Vectors Australian Equal Weight ETF

VanEck’s interest in equal weighting lead us to launch the VanEck Vectors Australian Equal Weight ETF on ASX (ASX Code: MVW) in March 2014. This is a passive strategy that tracks the MVIS Australia Equal Weight Index. The index and the strategy rebalance to equal weighting every three months. The outperformance of the index over the S&P/ASX 200 Index is shown at the beginning of the paper. At the time of publishing, over the long term the equal weight index has outperformed in 12 of the past 15 calendar years including the last six in a row.

Annual Returns: 2003 to 2017

Since March 2014 many investors have benefitted from using MVW as the core of their Australian equities exposure. The performance of the fund has been as follows:

<table>
<thead>
<tr>
<th>Performance as at 30 April 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>MVW</td>
</tr>
<tr>
<td>S&P/ASX 200 Accumulation Index</td>
</tr>
<tr>
<td>Difference</td>
</tr>
</tbody>
</table>

Inception date is March 4, 2014.
Source: Morningstar Direct, as at 30 April 2018. Results are per annum, calculated daily to the last business day of the month and assume immediate reinvestment of all dividends. MVW results are net of management fees and other costs incurred in the fund but do not include brokerage costs and buy/sell spread incurred when investing in MVW. Past performance is not a reliable indicator of future performance.
MWW holds only the largest and most liquid equities on ASX, currently 85 stocks. Investors in MWW benefit from the portfolio being restricted to the most liquid stocks, rather than trying to squeeze an arbitrary number like 200 or 300 stocks into a portfolio without any consideration of liquidity. The MWW Index’s size and liquidity constraints has also benefited investors in MWW by reducing turnover because fewer stocks has meant fewer corporate actions compared to a portfolio of 200 or 300 stocks. MWW’s management costs is 0.35% per annum and the ETF generally pays a dividend twice a year.

Important Notice:

VanEck Investments Limited ABN 22 146 596 116 AFSL 416755 (‘VanEck’) is the responsible entity and issuer of the VanEck Vectors Australian Equal Weight ETF (‘MWW’). This is general information only and not financial advice. It does not take into account any person’s individual objectives, financial situation or needs. Before making an investment decision in relation to MWW, you should read the PDS and with the assistance of a financial adviser consider if it is appropriate for your circumstances. The PDS is available at www.vaneck.com.au or by calling 1300 68 38 37.
Appendix 2

Rejecting the lognormal distribution and other mathematical functions

One attempt to get away from the error of assuming a normal distribution has been to assume a lognormal distribution instead. The fatal flaw in this attempt is Observation 1 on page 4. A lognormal distribution starts at x=0, y=0, which severely underrepresents the number of very low returning stocks.

Part of the attraction to the lognormal distribution is that researchers always want to use a distribution that can be expressed as a continuous mathematical function. This is because once you have a continuous mathematical function you can do a lot of manipulation and dissection very easily.

Unfortunately, if you start with an invalid assumption the conclusions you draw from your manipulation and dissection will also be invalid. The easy conclusions may fill out a research paper but they have no other value.

We all have to be realistic and recognise that there is no continuous mathematical function that can accurately represent these distributions of stock returns. Admitting this kills off a lot of conclusions we could have otherwise drawn but since those conclusions would have been invalid, we are better off without them. There is investors’ money at stake so we should stick to what is valid.
References

Equal weighting outperforms

Ernst, Philip, James Thompson and Yinsen Miao, Portfolio Selection: The Power Of Equal Weight (February 2016). Available at: https://www.researchgate.net/publication/301857457_Portfolio_Selection_The_Power_of_Equal_Weight

Skewed distributions

Author

Mr Michael Brown is a member of the Australian leadership team and a Director of VanEck Investments Limited. He has over 30 years’ experience in financial services and taxation. Prior to joining VanEck, Mr Brown was Executive Director at boutique asset management consulting firm, Sunstone Partners. Previously he served as Senior Vice President at BT Funds Management and held roles as Chief Tax Counsel at Perpetual Investments and MLC. Michael has always been at the cutting edge of developments in the asset management industry and government policy, using mathematics as a key to solving many problems.

About VanEck

Founded in 1955, VanEck was among the first asset managers helping investors achieve greater diversification through global investing. Today we are recognised for being a pioneer in global markets and for drawing on our experience to offer innovative solutions. We offer these solutions to individual investors and institutions, including endowments, foundations, pension plans and private banks.

VanEck is one of the world’s largest exchange traded product issuers. In Australia our range of ETFs (exchange traded funds offer investors intelligently designed investment strategies that take advantage of targeted market opportunities. With offices in key financial centres and regions including New York, Sydney, Shanghai, Singapore, Frankfurt, Madrid and Zurich, VanEck offers investors broad investment reach with deep experience.

Contact us

For more information visit

➢ vanecck.com.au
➢ 02 8038 3300
➢ Follow us
➢ @vanekc_au

Important notice:

This information is prepared in good faith by VanEck Investments Limited ABN 22 146 596 116 AFSL 416755 (‘VanEck’) as the responsible entity and issuer of VanEck Vectors Australian Equal Weight ETF (‘MVW’). It is general in nature and not financial advice. It does not take into account any person’s individual objectives, financial situation or needs. Before making an investment decision investors should read the product disclosure statement and with the assistance of a financial adviser consider if it is appropriate for their circumstances. A copy of the PDS is available at www.vaneck.com.au or by calling 1300 68 38 37.

This information is believed to be accurate at the time of compilation but is subject to change. VanEck does not represent or warrant the quality, accuracy, reliability, timeliness or completeness of the information. To the extent permitted by law, VanEck does not accept any liability (whether arising in contract, tort, negligence or otherwise) for any error or omission in the information or for any loss or damage (whether direct, indirect, consequential or otherwise) suffered by any recipient of the information, acting in reliance on it. The MVIS Australia Equal Weight Index (‘MVW Index’) is the exclusive property of MV Index Solutions GmbH based in Frankfurt, Germany (‘MVIS’). MVIS makes no representation regarding the advisability of investing in MVW. MVIS has contracted with Solactive AG to maintain and calculate the MVW Index. Solactive uses its best efforts to ensure that the MVW Index is calculated correctly. Irrespective of its obligations towards MVIS, Solactive has no obligation to point out errors in the MVW Index to third parties. MVW is subject to investment risk, including possible loss of capital invested. Past performance is not a reliable indicator of future performance. No member of the VanEck group guarantees the repayment of capital, the payment of income, performance, or any particular rate of return from the fund.